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Abstract An output-feedback control strategy for the reg-
ulation of a planar vertical take-off and landing aircraft
is presented here. The strategy consists of two controllers
that work simultaneously. The first controller stabilizes
the vertical variable, and is based on a simple feedback-
linearization procedure, in combination with a nonlinear
controller (which behaves as a terminal slide mode). The
other controller stabilizes the horizontal and angular vari-
ables to the desired rest position, and was designed using
an energy-control method. The velocities were exactly esti-
mated with a second-order sliding-mode observer. Because
this observer computes the velocities in finite time, the con-
trol strategy can be designed independently. The effective-
ness of the closed-loop system was tested through numerical
simulations and compared with other control strategies.
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1 Introduction

Nowadays, unmanned aerial vehicles (UAV) have several
actual applications. For instance, in security, they perform
tasks in reconnaissance, police assistance, and crowd mon-
itoring. In search and rescue, they are used in places where
the accessibility is highly complicated and that take a lot of
time to explore on foot or using terrestrial vehicles. UAVs
improve efficiency and effectiveness in monitoring water-
ways, civil engineering constructions, oil and gas pipelines,
pollution and air sampling, and disaster damage estimation.
In the field of communications they can help extend signal
coverage. More recently, UAVs have been used to help in
the creation of three-dimensional maps and to guide visitors
in places like university campuses. Moreover, UAVs have
been proposed as a means to provide package delivery to
customers who buy products through the internet. However,
to be able to apply UAVs in these and other applications,
several control mechanism must be designed. Developing
these mechanisms is by no means an easy task, among
other things because use of these vehicles involves poten-
tial physical risk to people. Moreover, deep knowledge of
the dynamics and behavior of these vehicles is necessary to
be able to propose techniques that allow them to be con-
trolled automatically. Among these UAVs, planar vertical
take-off and landing (PVTOL) aircrafts have been studied
extensively, because they have several characteristics that
make them suitable as a model for developing control tech-
niques that can be used to control actual unmanned flying
devices. Among their most important characteristics is that
these aircrafts are a simplified version of real flying devices,
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like some helicopters and the Harrier Jump Jet [9, 21, 26],
though their configuration and behavior allows us to con-
sider them as real aircraft [28, 37, 40, 49]. Traditionally, a
PVTOL aircraft consists of two rotors that work indepen-
dently of each other. These rotors produce a force and a
moment over the aircraft. In Fig. 1 shows a representation of
a PVTOL aircraft, where we can see that it has three degrees
of freedom, the horizontal and vertical positions (x, y), and
the angle (θ ) that the device makes with respect to the imag-
inary horizontal line. Another aspect that makes PVTOL
aircraft very attractive to develop control techniques is that
they belong to a class of systems that cannot be fully con-
trolled - that is, some of its degrees of freedom cannot be
directly controlled. Due to the above and the fact that strate-
gies developed for fully controlled systems are useless for
this kind of systems, being underactuated, they represent a
benchmark for investigating dynamics and control-related
issues for UAVs [10, 18, 20, 21, 27].

In the study of PVTOL aircrafts, two branches can be
identified: one devoted to developing stabilization control
techniques (see, for instance [18, 29, 38, 39, 50]), and the
other to proposing solutions to the tracking control prob-
lem (see [2, 6, 19, 23, 26, 30, 33, 34, 48]). A full review of
the works dealing with these topics is beyond the scope of
this study; nevertheless, we mention those we consider more
important and relevant to our work. Hauser et al. [23] pro-
posed applying an approximated input-output linearization
and neglecting the influence of rolling moment on the lateral
force, a nonlinear control strategy for a non-minimum phase
system, which accomplished bounded tracking and asymp-
totic stability. Using a similar approach in conjunction with
the back-stepping approach, Sepulcher et al. in [41] derived
another approximated solution. The small gain theorem was

Fig. 1 The PVTOL aircraft (front view)

used by Teel in [43] to solve the regulation control prob-
lem and was applied to control some systems, among them a
PVTOL system. The trajectory tracking problem for a sim-
plified version of a VSTOL was solved in [31] using a dif-
ferential flatness approach. In [42], the author used differ-
ential parameterization and exploited the PVTOL’s flatness
property for the regulation of the non-minimum phase out-
puts. An algorithm developed specifically for PVTOLs was
presented in [13]. This algorithm is based on forwarding
control and ensures asymptotic stability using a Lyapunov
function. Based on that work, comparable strategies with
real applications for PVTOLs systems were designed in [14,
27, 37, 49]. Olfati-Saber addressed in [35] the global con-
figuration stabilization for the VTOL aircraft with a strong
input coupling using a smooth static-state feedback. In addi-
tion, the VTOL system flatness property is used to obtain its
corresponding outputs in that work. A different algorithm
for the planning of feasible and minimum energy paths was
introduced in [6]. Its performance was tested numerically
using a one-dimensional system and a PVTOL aircraft. In
[1], the authors presented an approach based on the com-
bination of an IDA-PBC technique and a reduced-order
observer. The regulation problem was solved in [45] using a
passivity-based control; the authors showed that the PVTOL
dynamics can be expressed as an interconnection of passive
systems with a pendulum-like sub-system. Based on linear
algebra, an attractive control strategy to solve the trajec-
tory control problem for a PVTOL aircraft was introduced
in [17]. In [7] and [46], several control strategies for planar
vertical takeoff and landing are presented. These strate-
gies assure global asymptotic stability. In [4] and [24], the
authors used the sliding mode method to develop a robust
control strategy for the PVTOL. Finally, in [2, 6, 15, 17, 19]
, several solutions to control the kind of aircraft we are deal-
ing with here can be found. In [16], a state-feedback con-
troller for a PVTOL model where only partial information
of their dynamics was available is proposed. The unknown
dynamics are recovered using a finite-time observer with
fast convergence time. In [7] and [46], several control strate-
gies for planar vertical takeoff and landing are presented.
These strategies assure global asymptotic stability. In [47],
the authors proposed an alternative cascade structure for the
PVTOL model previously proposed by Olfati-Saber [35].
In [44], a controller based on a Lyapunov function with
asymptotic stabilization is introduced; the author used the
method presented in [3] to design the controller. In [32],
the authors proposed a robust control strategy to stabilize a
PVTOL aircraft in the presence of crosswind. The solution
is based on robust-control Lyapunov functions and Sontag
universal stabilizing feedback. The parameters are tuned in
real time through the Riccati equation. In [8], a solution to
the path-following problem for PVTOL aircraft, which is
applicable to a class of smooth Jordan curves, is presented.
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The obtained controller guarantees that the time average
of the roll angle is zero and that the PVTOL aircraft does
not perform multiple revolutions about its longitudinal axis.
In [19], the authors presented a bounded feedback track-
ing stabilizer for the PVTOL aircraft where the velocity is
not always available. This solution also has uniform global
asymptotic stability and uniform local exponential stability
of the closed-loop tracking dynamics. In [2], considering
actuator limitation constraints, asymptotic-output tracking
for the PVTOL aircraft is achieved by using a nonlinear
optimal control allocation method presented in [47].

In the present paper, a control strategy for solving the
output-feedback regulation problem for the PVTOL system
is proposed. To accomplish this, we first design two con-
trollers that work simultaneously, assuming that the whole
state is available. We then use a second-order sliding-mode
observer for estimating the actual velocities. The controller
was designed to be independent from the observer, because
it has observation exact finite-time [11]. For designing the
controller in charge of stabilizing the vertical position, we
use a combination of feedback linearization and a saturation
function. This saturation function depends on a nonlinear
combination of the vertical variables. The second controller
was designed using the basin ideas of the energy-shaping
control approach and is devoted to steering the horizontal
and angular positions toward to the desired reference.

The remainder of this study is organized as follows.
In Section 2, we introduce the theoretical framework used
in the forthcoming developments. In Section 3, the pro-
posed solution to the regulation problem of the PVTOL
system is developed. The results of the numerical experi-
ments assessing the effectiveness of our control strategy are
presented in Section 4, while the concluding remarks are
given in Section 5. An Appendix is also included, where the
corresponding proofs of some of the required lemmas can
be found.

2 Problem Statement

Let us introduce the normalized equations of the PVTOL
system, shown in Fig. 1, found in [13]:

ẋ1 = x2;
ẋ2 = − sin(θ1)u1;
ẏ1 = y2;
ẏ2 = cos(θ1)u1 − 1;
θ̇1 = θ2;
θ̇2 = u2.

(1)

where variables x1 and y1 are, respectively, the normal-
ized horizontal and vertical positions, and θ1 is the angle
that the PVTOL makes with respect to the imaginary hor-
izontal line; x2 and y2 are the normalized horizontal and

vertical velocities, respectively, and θ2 is the angular veloc-
ity. The thrust to levitate the PVTOL is u1, and u2 is the
rolling moment about its corresponding center of mass.
The normalized gravity force was fixed at “1”. Notice that
this system belongs to the class of underactuated systems,
because it has three degrees of freedom, (x1, y1, θ1), and
two independent controllers, (u1, u2).

Control Problem Consider the normalized PVTOL sys-
tem (1). The goal of this work is to design the smooth
controllers, u1 and u2, to solve the output-feedback regula-
tion problem for (1), provided that the system positions are
available and that the system angle is initialized inside of
I0 = (−θ, θ), with θ < π/2. Formally, we want to propose
u1(q, p̂) and u2(q, p̂), such that:

lim
t→∞ ‖q − q‖ = 0 and lim

t→∞ ‖p‖ = 0,

where the available position q = (y1, x1, θ1) is the sys-
tem output, p = (y2, x2, θ2) and p̂ are the vector velocity
state and it corresponding estimation, respectively, and q =
(y1, x1, 0) is the desired reference position.

This section is concluded by introducing the following
assumptions:

A1: The angle, θ(t) ∈ I0, holds for all time.
A2: The position, q, is always available.

Main contributions Compared to previous works, some
of which are mentioned in the Introduction, the main con-
tributions of this work are highlighted in the following
statements:

• The system has been controlled using many approaches
found in the literature. However, we introduce a con-
troller that is able to regulate vertical displacement in
a small period of time, avoiding undesirable overshoots
in the velocity coordinate. This characteristic is quite
convenient when carrying out hovering and landing
maneuver tasks.1 On the other hand, the regulation of
the angular and vertical coordinates was achieved using
a control scheme based on the shaping energy approach,
obtaining a good performance.

• Another advantage of our approach is that it enables
a sliding-mode observer that is adequate to solve the
output-feedback regulation problem, with a simple sta-
bility analysis.

We finish this section by introducing some notation and
definitions needed in the forthcoming developments.

1In the forthcoming developments we show that manipulating the con-
stant L (see Eq. 2) makes it possible for the system to reach the
minimal time response.
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Notation and definitions

w̃ = w − w; w = {x, y},
where w is a fixed constant. The symbol δ > 0 indicates
a very small constant; sn[∗] and sgn[x] are used to refer,
respectively, to a linear saturation function and the signum
function of a real number. That is:

sn[x] =
⎧

⎨

⎩

x : if : |x| ≤ n,

n : if : x > n,

−n : if : x < −n,

; sgn[x]

=
⎧

⎨

⎩

1 : if : x > 0,

−1 : if : x < 0,

∈ [−1, 1] : if : x = 0.

.

3 Control Strategy

First, we introduce our feedback-control strategy, and then
we present a super-twisting based observer (STBO) ade-
quate to solve the output-feedback regulation problem. The
corresponding control strategy consists of designing u1,
which is responsible for maneuvering the vertical position
and the vertical velocity of the system, each represented
by y = (y1, y2). Simultaneously, u2 is proposed such that
it controls the complementary horizontal variables x =
(x1, x2), and the angular variables θ = (θ1, θ2), restricted to
θ1 ∈ I0. In order to develop these controllers, we introduce
the following lemma:

Lemma 1 Consider the following second-order system:

α̇ = β;
β̇ = −sr

[

L
(

α̃ + β|β|
2r

)]

= −sr [Lη̃], (2)

where α, β ∈ R, and r > 0 and L > 0. Then, the origin
(α = α, β = 0) of system (2) is GAS.2 Evidently, when

L → ∞, the second equation of Eq. 2 turns out to be
·
β =

−rsgn[̃η].

This system behaves as a robust sliding-mode control,
having the characteristic of showing less overshoot, partic-
ularly over the y -coordinate. Additionally, it is well known
that these configurations present a time-optimal solution
[22].

The proof of this lemma is in the Appendix.

Controlling the vertical variables Based on [27], the con-
trol action u1 is proposed as follows:

u1 = 1 − sr [Lỹ]

cos(θ1)
, (3)

2GAS refers to “globally asymptotically stable” and “locally exponen-
tially stable.”

where L > 0, 0 < r < 1 and

ỹ = ỹ1 + y2 |y2| /(2r)

From the above, the system (1) can be rewritten, as:

˙̃x1 = x2;
ẋ2 = tan(θ1)(sr [Lỹ] − 1);
˙̃y1 = y2;
ẏ2 = −sr [Lỹ] ;
θ̇1 = θ2;
θ̇2 = u2,

(4)

where x̃ = [̃x1, x2]T .
Finally, it should be borne in mind that the third and

fourth equations of the system of Eq. 4 satisfy the condition
in Lemma 1. That is, ỹ is GAS, provided that θ1 ∈ I0.
Because (ỹ, ẏ) is GAS, the effect produced by this function
can be neglected (this fact is shown below).

Comment 1 As can be seen, the control strategy gives pri-
ority to the regulation of the y -coordinate, having both a
minimal time response for L that is sufficiently large, and a
small overshot (see Section III of [22]).

Designing of controller u2 based on the energy control
approach Observe that, as long as I0 = (−θ, θ), this
model is well-defined. This condition is justified below. The
needed candidate Lyapunov function is proposed as:

VT (Z) = 1

2
zT

2 Mz2 + �

m2
log(cos θ1)+ kp

2

(

θ1 + m2

m3
x̃1

)2

,

(5)

where z1 = [x1, θ1], z2 = [x2, θ2], kp, m1, m3 > 0, and
m2 < 0, and M > 0 is fixed as:

M =
[

m1 m2

m2 m3

]

with � = m1m3 − m2
2 > 0.

Comment 2 This Lyapunov function was designed using
the basin ideas of the IDA-PBC approach [1, 36]. That
is, function V was proposed by shaping the potential and
kinetic energies, through the solution of two matching
conditions.

It should be underscored that VT (Z) is strictly positive
and radially bounded for all θ1 ∈ (−π/2, π/2), if m2 < 0. It
is easy to check whether the time derivative of Eq. 5, around
the trajectories of Eq. 4, is given by:

V̇T (Z) = u2(m3θ2 +m2x2)+(m3θ2 +m2x2)	(̃x1, θ1), (6)
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where:

	(z1) = 1

m2m
2
3

(

kpm2m3θ1 + kpm2
2x̃1 − m1m3 tan θ1

)

,

(7)

Hence, after fixing u2, as:

u2 = −λ(m3θ2 + m2x2) − 	(̃x1, θ1). (8)

where λ > 0, it is easy to see that Eq. 6 becomes:

V̇T (Z) = −λ(m3θ2 + m2x2)
2. (9)

To avoid the singular points ±θ , the following set of admis-
sible solutions for the system (4) should be introduced:

A = {Z = (x1,
.
x1 = x2, θ1,

.

θ1 = θ2) ∈ R
2 × (−θ, θ)×R}.

Evidently, if the system (4) is initialized inside of the
following invariant set:

�θ = {Z ⊂ A : VT (Z(0)) < R = �

m2
log(cos θ)}, (10)

then we have that VT (Z(t)) < R, for all t ≥ 0. This means
that Z ∈ �θ .

Comment 3 The set �θ has the property that all the solu-
tions of the closed-loop system (defined by Eqs. 8 and 4)
that start in �θ remain in �θ forever. That is, �θ is an
invariant set for the closed-loop system. In addition, this
set is needed to apply LaSalle’s invariance theorem [25]
to prove convergence to the origin of Z. It is important to
note that the proposed solution gives a higher priority to
the convergence of the y-coordinate. Additionally, to solve
the regulation of variables (x, θ) a reduced-order energy
method was used. This solution differs from the one pre-
sented in [1], which applies the IDA-PBC approach for the
whole system.

Convergence at the origin of variables (θ, z) Since the
proposed function, VT , is strictly positive and definite in �θ

and V̇T is a semi-definite negative function, stability of the
equilibrium point in the Lyapunovian sense is concluded. To
complete the proof, it is necessary to use LaSalle’s invari-
ance theorem. To do so, it is necessary to compute the
largest invariant set M contained in the set S, where S is
defined as:

S = {

Z ∈ �θ : (m3θ2 + m2x2) = 0
}

.

After some tedious considerations, it can be concluded that
M is constituted by the single point M = {Z = 0}.
According to LaSalle’s theorem, all the trajectories of the
closed-loop system that start inside the set �θ asymptoti-
cally converge toward to the largest invariant set contained
in S, which is the equilibrium point Z = 0.

The previous discussion is summarized in the following
proposition. For this goal, the set of admissible control gains
is defined as:

K = {κ = (0 < r < 1, L > 1, λ > 0, m1 > 0, m2 < 0
� = m1m3 − m2

2 > 0, kp > 0)
} ∈ R

7 .

(11)

Proposition 1 Consider the nonlinear system (1), in closed
loop with (u1, u2), where:

u1 = 1−sr

[

L
(

ỹ1+ y2|y2|
2r

)]

cos(θ1)
,

u2 = −λ(m3θ2 + m2x2) − 	(̃x1, θ1)
(12)

and:

	(z1) = 1

m2m
2
3

(

kpm2m3θ1 + kpm2
2x̃1 − m1m3 tan θ1

)

.

Assuming that the control gains κ ∈ Q are selected accord-
ing to Eq. 11, then the origin of the closed-loop system is
locally asymptotically stable, with its corresponding domain
of attraction defined by Eq. 10.

Comment 4 Evidently, the set �θ can be enlarged as
desired. To do so, the parameters of M can be fixed, such
that �/m2 << 1, or the values of θ can be fixed sufficiently
close to π/2.

Numerical simulations In this section we test the robust-
ness of our control strategy and compare its performance
with two other well established control techniques. To this
end, we designed two numerical experiments. In the first
experiment we use the simplified model (1), and consider
the presence of small perturbations that act in the accelera-
tion of variable x y y. In the second experiment, we use the
more complete model, given below in Eq. 14, and in which
the structural parameter ε is unknown for the design of the
control laws.

First experiment in this experiment we compared our con-
trol strategy (OCL), defined in Eq. 12, with the control
techniques proposed by Fantoni et al. in [14] and by Munoz
et al. in [32], respectively referred to as (FCL) and (MCL).
The control task consisted of bringing the PVTOL from the
initial rest position (y10 = 6.1, x10 = −0.6, θ10 = 0.8), to
the a final rest position close to the origin. The persistent
perturbation, added to the accelerations of variables y and
x, was defined as ω(t) = 0.08 sin(t) cos(t), for all t . The
corresponding control gains were:

m1 = 0.85 m2 = −0.72 m3 = 0.85
r = 0.6 L = 150 kp = 1

, (13)

with θ = 0.99π/2. The control gains of FCL and MCL were
taken from [14] and [32], respectively. The obtained results
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are shown in Fig. 2, which shows that OCL behaves as
well as MCL does. However, in steady-state, OCL exhibits
a better performance than the performance of both FCL
and MCL. We must recall that MCL was proposed under
a robust control scheme based on Sontag’s formula, while
OCL and FCL were designed without considering external
perturbation.

Second experiment in this simulation we compare our
control law OCL with two strategies: the H∞ (HIL) and the
slide-mode control (SMC). To this end, we consider a more
complete model than the system (1), given by:
..
y1 = cos(θ1)u1 − 1 + εu2 cos θ1 + ω1(t);
..
x1 = − sin(θ1)u1 + εu2 cos θ1 + ω2(t);
..

θ1 = u2 + ω3(t),

(14)

where ωi are small external unknown and bounded pertur-
bations, and ε < 1 is a small and unknown coefficient that
characterizes the coupling between the rolling moment and
the lateral acceleration of the system. The control task con-
sisted of bringing the system from the initial rest position
(y10 = 1, x10 = −0.2, θ10 = 0.2), to the neighborhood of
the origin, with ε = 0.1, and:

ω1 =0.1 ∗ sin(t); ω2 =0.09 ∗ sin(t) ∗ cos(t); ω3 = 0.1∗sin(t)√
t+1

The SMC was designed based on the work [4], where the
control law u1 and u2 were tuned using the same con-
trol parameters used in that work. The HIC was designed
according to the H∞ procedure summarized by Castaños

et al. in [5]. To this end, we used the feedbacks u1 =1−K
T

1y

and u2 = −K
T

2 Z, where:

K
T

1 = (2.4004, 5.2594); K
T

2

= (−0.4423, −1.2154, 1.8435, 2.3314), (15)

and y = (y1,
.
y1 = y2) and Z = (x1,

.
x, θ1,

.

θ1). The detailed
procedure to obtain the HIC can be found in the Appendix.

The control parameters used in OCL were the same as those
used in the first experiment. To have an intuitive idea of
the performance of each strategy, we used the following
performance index:

J (T ) = 1

T

T
∫

0

(ZT (s)Z(s) + yT (s)y(s))ds; T > 0.

The performance of the control actions of each strategy,
with their corresponding performance indexes are shown in
Fig. 3. According to the performance indexes, our control
law outperforms the other two laws. On the other hand, the
behaviors of the controllers of SMC exhibit more chatter-
ing, with bigger amplitude than the controllers of other two
strategies, even when the sign function was smoothed by
sign(x) = x/(|x|+10−4). Additionally, we can see that the
amplitudes of u1 and u2 of OCL are similar to the ones of
the HIC. However, it must be mentioned that if we manipu-
late the penalty function for the HIC procedure, it is possible
to obtain a better performance. It is worthy mentioning that
we did not show the plot of the states (Y, Z) because they
overlap on top of each and are thus hard to distinguish.

4 Output-feedback Stabilization

The state feedback controllers u1 and u2, developed in the
previous section require measurements of both the positions
and velocities of the system. In this section, the STBO,
found in [12], was adequate to estimate the non-available
velocity vector p = (y2, x2, θ2), from the knowledge of
the measurement of the vector position q = (x1, y1, θ1)

T .
Based on Proposition 1, the actual controllers, û1 and û2,
were defined as:

û1(q, p̂) = 1−r̂
cos(θ1)

,

û2(q, p̂) = −λ(m3̂θ2 + m2x̂2) − 	(̃x1, θ1),
(16)
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Fig. 2 Comparison of the closed-loop responses among OCL, FCL, and MCL for a hovering task and in presence of sustained small perturbations
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Fig. 3 Comparison of the closed-loop responses, in the presence of parametric uncertainties, among OCL, SMC, and HIC , for a regulation task
from the initial condition, q(0) = (y1(0) = 1, x1(0) = −0.2, θ1(0) = 0.2) and

.
q(0) = 0, to a neighborhood of the position zero, with ε = 0.1

where:

r̂ = sr

[

L
(

ỹ1 + ŷ2 |̂y2|
2r

)]

; p̂ = (̂x2, ŷ2,̂θ2).

Here, p̂ was generated using the following STBO algo-
rithm:3

˙̂q = p̂ − Ra	 [̂q − q] ;
˙̂p = G(q, p̂) + R3û2(q, p̂) − Rbsgn [̂q − q] ,

(17)

where:

G(q, p̂) =
⎡

⎣

tan(θ1)(̂r − 1)

−r̂

0

⎤

⎦ ; R3 =
⎡

⎣

0
0
1

⎤

⎦ , (18)

and:

	(q̂ − q) = [

φ (̂x1 − x1) φ (ŷ1 − y1) φ
(

̂θ1 − θ1
) ]

,

with φ(x) = sgn[x] |x| 1
2 , and the gain matrices Ra =

diag(ra1 , ra2 , ra3) and Rb = diag(rb1 , rb2 , rb3), with rai

and rbi
being positive gains, chosen as follows:

rai
> ε; rbi

>
(1+ζ )(rai

+ε)

(1−ζ )

√

2
(

rai
−ε
) ;

0 < ζ < 1; i = {1, 2, 3}.
(19)

Here, ε > 0 is sufficiently large to reduce the time of
convergence. Then, there exits some region around the equi-
librium 	 ∈ R

6 that contains the equilibrium point (q = q,
p = 0, p̂ = 0), such that all the trajectories of system (1), in
closed-loop with Eqs. 16 and 17, that start in 	 are bounded
and satisfy:

lim
t→∞(q(t), p(t), p̂(t)) = (q, 0, 0).

3Similarly, q̂ = (ŷ1, x̂1,̂θ1,̂θ2) is the estimation of variable q.

Proof Substituting the values of û1 and û2, given in Eq. 16,
into system (1) leads to:

q̇ = p;
ṗ = G(q, p̂) + R3û2(q, p̂).

(20)

Defining the observation errors as e1 = q̂ − q and e2 =
p̂ − p, it is easy to see, from systems (20) and (18), that the
error equations take the following form:

ė1 = e2 − Ra	 [e1] ;
ė2 = −Rbsgn [e1] .

(21)

The proof of the finite time of convergence to zero of vari-
ables e1 and e2 is taken from the work of [12]. That is, it is
assumed that Ra > 0 and Rb > 0 satisfy the inequalities
given in Eq. 19. Then, observer (17) assures finite time con-
vergence of the estimated states (̂q, p̂) to the actual states
(q, p) ∈ R

3.

Convergence stability analysis sketch First of all, the fol-
lowing equality is fulfilled:

p̂ = p + e2 = (y2 + e2(1)
, x2 + e2(2)

, θ2 + e2(3)
)T , (22)

where e2(i)
is a bounded function with finite time of conver-

gence to zero. Therefore, from the first and fourth equations
of Eq. 20, we obtain4:

˙̃y1 = y2;
ẏ2 = −sr

[

L

(

ỹ1 +
(

y2+e2(1)

)∣

∣

∣y2+e2(1)

∣

∣

∣

2r

)]

.

4Remember that system (20) consists of six equations, because q ∈ R
3

and p ∈ R
3.



www.manaraa.com

450 J Intell Robot Syst (2018) 90:443–454

Fig. 4 Output-feedback responses of the PVTOL system for a hovering maneuver task. The initial and final positions were, respectively, q0 =
(y10 = 0, x10 = 2.5, θ10 = −0.2) and q∞ = (y1∞ = 7, x1∞ = 0, θ1∞ = 0.0)

Mimicking the ideas in Lemma 1, it can be concluded that
the later system is GAS, because e2(1)

→ 0 in finite time.
Besides, the last system does not show finite time of escape,
because it is locally Lipschitz.

The remainder variables are analyzed using the system
(4) in closed-loop with the second equation of Eq. 16. This
closed-loop can be rewritten as:

ż1 = z2;
ż2 = h[z1, z2] − b2λ(m3e2(3)

+ m2e2(2)
),

(23)

where b2 = [0, 1], and h[z1, z2] was proposed, such that:
[

∂VT

∂Z

]T [
z2

h[z1, z2]
]

= −λ(m3θ2 + m2x2)
2,

where the signals e2(3)
and e2(2)

asymptotically converge to
zero in finite time. The invocation of well-known results
from asymptotic stability of cascaded systems [41] com-
pletes the proof of local asymptotic stability. Consequently,
it can be assured that z1 and z2 locally asymptotically con-
verge to zero. Finally, it is shown that the trajectories of
system (23) do not escape to infinity. From this, it is easy to

Fig. 5 Output-feedback trajectory tracking for two closed trajectories: a cardioid (q∞E) and an irregular lemniscate
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see that the time derivative of VT , around the trajectories of
Eq. 23, leads to:

V̇T ≤ 1

2
(m3e23

+ m2e22
)2.

From the last inequality, it can be concluded that Z cannot
exhibit finite time of escape, because e2 → 0 as long as
t → t∗. Evidently, after t > t∗, the function V̇T becomes
semi-definite negative.

Numerical simulations The performance of the proposed
output-feedback control scheme was tested numerically,
using two simulations. The first consisted of a hovering
maneuver from the rest position:

q0 = (y10 = 0, x10 = 2.5, θ10 = −0.2),

to the final position:

q∞ = (y1∞ = 7, x1∞ = 0, θ1∞ = 0.0).

The numerical experiment used the same control gains as in
Eq. 13, while the initial conditions of the STBO algorithm
were set at the origin, and their gains were fixed as:

ra1 = 2 ra2 = 5 ra3 = 2 rb1 = 8.6 rb2 = 12.2 rb3 = 8.6 .

The obtained results can be seen in Fig. 4, which shows
that the evolution of the displacement in the space effec-
tively moves the system from the initial position, q0, to the
final rest position, q∞. The finite-time convergence of the
estimated velocity, p̂, to the actual p can be realized after
16 seconds elapse. In addition, it can be noted that all vari-
ables are very close to the desired final rest position, after
50 seconds elapsed, the horizontal position having the worst
convergence time, while the vertical position reaches its
final position close to 5 seconds.

The second numerical experiment consisted of making
the system follow two reference trajectories. The references
were a cardioid (q∞E) and an irregular lemniscate (q∞L),
respectively defined as:

q∞E =
(

y1∞C
= 4 + (2 sin(

t

8
) − sin(

t

4
)), x1∞C

= 3(2 cos(
t

8
) − cos(

t

4
)), θ1 = 0

)

and

q∞L =
(

y1∞L
= 5 − (cos(

3t

8
) sin(

t

8
)), x1∞L

= cos(
t

4
)), θ1 = 0

)

The control gains for the cardioid were selected as:

m1 = 2.5 m2 = − 1
2 m3 = 2.5

r = 2 L = 220 kp = 2.6
,

and, for the irregular lemniscate, were selected as:

m1 = 4.8 m2 = −1.5 m3 = 4.8
r = 5 L = 230 kp = 4.8

.

In both cases, the initial conditions were fixed at the ori-
gin. The obtained results are shown in Fig. 5. From this
figure, it can be seen that, even when our control strategy
was designed for a different end, it was able to satisfactorily
track both references.

5 Conclusion

An output-feedback control strategy for the regulation of
a PVTOL aircraft is presented here. To this end, two con-
trollers, that work simultaneously, were designed, assuming
that the whole state is available. The first controller is
devoted to stabilizing the vertical variable and is based
on a simple feedback-linearization procedure in combina-
tion with a nonlinear controller that behaves like a termi-
nal slide mode. The second controller, designed using an
energy-control method, stabilizes the horizontal and angu-
lar variables to the desired rest position. Having proposed
both controllers, a second-order sliding-mode observer for
the exact velocities estimation was used. The proposed con-
trol strategy can be designed independently, due to the fact
that the observer estimates the velocities in finite time. The
closed-loop system was tested and illustrated through some
numerical simulations, and comparisons with other control
strategies.
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Appendix

Proof of Lemma 1 Use the following Lyapunov function:

E(α, β) =
∫ α+ β|β|

2r

0
sr [Ls] ds + rβ2

2
,

whose time derivative, around the trajectories of Eq. 2, leads
to:

Ė(x, y) = −|β|
r

sr

[

L

(

α + β |β|
2r

)]2

.

which implies that Ė(α, β) ≤ 0. As E is a strictly posi-
tive and non-increasing function, and α and β are bounded.
Now, from LaSalle’s invariance principle, as given in [25],
all solutions of system (2) converge to the largest invariant
set �, in

{

(α, β) ∈ R
2 : Ė(α, β) = 0

} = {β = 0} ∪ {α +
β|β|
2r

= 0}. Computing the largest invariant set, it is easy
to see that � = {α = β = 0}. Therefore, from LaSalle’s
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invariance, we conclude that all solutions of system (2)
converge toward the invariant set � = {0}.

Comment 5 Notice that the proposed E is radially bounded,
as pointed out in [43] and [35]. That is, E → ∞ as long as
(α, β) → ∞.

Design of the H∞ -based linear controller First of all, we
introduce the feedback u1 = 1 + v1. Then, we linearized,
around the equilibrium point (y1 = y1, x1 = x1, θ1 = θ1),
with ε = 0, the system (14). The obtained linearized sys-
tem was expressed using the following decoupled pair of
systems:

.
y = A1y + B1v1 + B1ω1;
sy = C1y + v1,

(24)

and,
.

Z = A2Z + B2u2 + B3ω23;
sZ = C2Z + u2,

(25)

where y = (y1,
.
y1 = y2), Z = (x1,

.
x1 = x2, θ1,

.

θ1 = θ2),
and ωT

23 = [ω2, ω3] and:

A1 =
[

0 1
0 0

]

; B1 =
[

0
1

]

; CT
1 =

[

1
0

]

and:

A2 =

⎡

⎢

⎢

⎣

0 1 0 0
0 0 −1 0
0 0 0 1
0 0 0 0

⎤

⎥

⎥

⎦

; B2 =

⎡

⎢

⎢

⎣

0
0
0
1

⎤

⎥

⎥

⎦

; B3 =

⎡

⎢

⎢

⎣

0
1
0
1

⎤

⎥

⎥

⎦

; CT
1 =

⎡

⎢

⎢

⎣

1
1
0
0

⎤

⎥

⎥

⎦

Please notice that (sy, sz) are the penalty signals. In our
case, the H∞-control problem consisted of finding two con-
trollers, v1 and u2, such that they stabilize, respectively, the
systems (24) and (25), satisfying the following inequalities:

∫ T

t0

s2
y(τ )dτ ≤ γ1

∫ T

t0

ω2
1(τ )dτ ;

∫ T

t0

s2
Z(τ)dτ

≤ γ23

∫ T

t0

‖ω23(τ )‖ dτ,

where
∥

∥Tsyω1

∥

∥∞ < γ1,
∥

∥TsZω23

∥

∥∞ < γ23
5 and v1 = K

T

1 y

and u2 = K
T

2 Z were obtained for the systems (24) and (25),
respectively, solving some version of the Riccati equation
[5]. Using the Matlab package we found that K1 and K2

coincided with Eq. 15, with γ1 = 1.1 and γ23 = 1.4.

5Tsw denotes the transference function from w to z.
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